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1. Introduction 

The poor air quality in large parts of the world, in Asian megacities as well as in urban regions in 
Europe, as well as changing global climate patterns are among the biggest environmental problems 
nowadays. They are affecting several sectors such as public and environmental health and biodiversity 
and have major consequences for the changing global climate. While in Europe a slight decrease of air 
pollution in general can be observed over the last 15 years (Priemus et al. 2009), air pollutant 
concentrations particular in many urban regions are still too high, i.e. above defined standards, and 
harm human health and ecosystems (Guerrerio et al. 2014). Also in other parts of the world, e.g. in 
Asian cities, air quality levels and ambient air quality standards indicate that levels for instance of PM10 
and SO2 continue to exceed air quality guidelines. At the same time global climate patterns are 
increasingly changing, mainly in terms of temperature and precipitation. Though the awareness that 
air quality and climate need to be improved is increasing among all relevant actors nowadays, there is 
often not sufficient data to assess and monitor air quality, e.g. PM2.5 and ozone pollution levels, of 
climate characteristics, which hamper the development of effective measures and interventions. 

In order to address these challenges, proper and accurate data of various atmospheric constituents 
contributing to air pollution as well as meteorological parameters is needed for detecting single severe 
events and sources affecting air quality as well as for monitoring long-term trends in changing air 
quality patterns and climate change impacts. Data of atmospheric pollutants retrieved from current 
and future satellite sensors and instruments of high spatiotemporal resolution can be important 
sources of information for various applications and users dealing with the effects of poor air quality.  

 

1.1 Goals of the study 

Goal of this study is to identify and to develop an inventory and overview of potential and future user 
needs of national and international scientific, governmental and commercial users in terms of 
information from products and services that may or may not include satellite data within the domain 
of air quality and atmosphere related climate. In doing so, the added value and usability of satellite 
data on air quality as well as existing challenges and bottlenecks for the same will be investigated, also 
in comparison to data and information derived from other sources, such as in situ or airborne 
measurements. In detail this report investigates the following questions: 

- What are the different users and fields of application using air quality and climate data? 
- What are the specific user needs of these groups for air quality and climate data? 
- What are advantages and disadvantages of air quality and climate data captured from satellite 

sensors as seen by the different user groups? 
- What is the added value of air quality and climate data from satellite based measurements? 
- What are new business models and new (commercial) markets for valorising satellite based air 

quality and climate data? 
- What are future needs of different users/fields of application for air quality and climate data?  
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1.2 Scope of the study 

The focus of the study is on the needs of governmental, academic and commercial users for air quality 
and climate data from various sectors and fields of application. Therefore, at first an inventory of 
potential user groups and field of applications was developed, particular focussing also on future 
needs and potential users, including those who do not work with satellite data of air quality yet. In 
addition, a comprehensive literature review was conducted exploiting scientific literature as well as 
reports and documents from practice, as far as available. Thereafter, interviews with selected experts 
from governments, academia and industry were conducted. The expert interviews were selected and 
conducted in order to include:  

- Experts form academia and science, practice, governmental, and commercial institutions 
- Experts working on different scales from global to sub-local 
- Experts from Europe as well as other parts of the world 
- Experts working in different disciplines resp. fields of application 
- Experts producing air quality and climate data resp. relevant applications based on these, and 

experts using data, e.g. for air quality planning or health impacts assessment.  

 

1.3 Methodology of the study 

Main methods applied in the study are literature review and expert interviews. The literature review 
includes mainly journal articles and conferences proceedings. Based on an initial reading of relevant 
review papers (Duncan et al. 2014, Streets et al. 2014, Martin 2008) we first identified the main fields 
of application of air quality and climate data and then searched on Scopus the amount of relevant 
publication per field. The following domains were distinguished.  

1. “Urban planning” or “spatial planning” 
2. “Epidemiology” or “health”  
3. Climate modelling 
4. Air quality modelling  
5. Environmental monitoring  

Single search strings and results of the literature search are shown in table 1. Given the huge amount 
of scientific publications found per field of application, we decided to focus only on peer reviewed 
review papers, which provide a very good overview of the state of art in a certain field and typically 
include more or less specific future research and data needs. For the literature review we focused 
solely on publications that include aspects of satellite based/remote sensed data (search string 
“satellite  OR  remote sensing”), because otherwise the number of potential review papers would have 
even been larger and consequently not to be read within the scope of the assignment. 
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Table 1 Literature search results 

Field of 
application 

Search string Scientific 
publications 

Review 
papers 

health TITLE-ABS-KEY ( ( satellite  OR  "remote sensing" )  AND  ( "air 
pollut*"  OR  "air quality" ) AND (epidemiology OR health) ) AND 
PUBYEAR > 2009 

694 37 

Urban 
planning 

( TITLE-ABS-KEY ( satellite  OR  "remote sensing" )  AND  TITLE-
ABS-KEY ( "air pollut*"  OR  "air quality" )  AND  TITLE-ABS-KEY ( 
"urban plan*"  OR  "spatial plan*" ) )  AND  PUBYEAR  >  2009  

64 3 

Environment 
and 
monitoring 

( TITLE-ABS-KEY ( satellite  OR  "remote sensing" )  AND  TITLE-
ABS-KEY ( "air pollut*"  OR  "air quality" )  AND  TITLE-ABS-KEY ( 
environment  AND monitoring ) )  AND  PUBYEAR  >  2009  

225 8 

Climate 
studies 

( TITLE-ABS-KEY ( satellite  OR  "remote sensing" )  AND  TITLE-
ABS-KEY ( "air pollut*"  OR  "air quality" )  AND  TITLE-ABS-KEY ( 
climate) )  AND  PUBYEAR  >  2009 

738 35 

Air 
dispersion 
modelling  

( TITLE-ABS-KEY ( satellite  OR  "remote sensing" )  AND  TITLE-
ABS-KEY ( "air pollut*"  OR  "air quality" )  AND  TITLE-ABS-KEY 
(air  AND dispersion  AND modelling ) )  AND  PUBYEAR  >  2009 

92 4 

 

For selecting interview partners, we started also from the given domains and identified key actors that 
we have access to already from earlier and ongoing studies. Other interview partners were suggested 
by NSO. Furthermore, relevant further interview partners mentioned by the interviewees were 
contacted as well. Interviews took usually between 30 and 45 minutes and were conducted using 
guiding questions (Annex 7.1).  
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2. Air quality, climate and satellite based data collection and use 

2.1 Current situation with respect to air quality and climate 

Over the past 15 to 20 years the air quality in Europe has improved significantly, also due to the 
approval and enforcement of the EU air quality directive in year 2008. However, large parts of the 
European population is still breathing air with pollution levels exceeding EU and WHO standards 
(Guerreiro et al. 2014). In other parts of the world, particular in large Asian cities the situation is much 
worse. Ninety-eight percent of cities in low and middle-income countries with populations of more 
than 100,000 are suffering from heavily polluted air. Moreover, ongoing trends towards urbanisation 
and expansion of road traffic in these cities are anticipated to further increase population exposure to 
bad air quality (Kumar et al. 2014). Due to global warming, i.e. the gradual increase in the overall 
temperature of the earth's atmosphere generally attributed to the greenhouse effect, also essential 
climate variables have been changing substantially over the last decades and are supposed to change 
further. Particular temperature and precipitation patterns are likely to change significantly further on.  

 

2.2 State of the art of air quality and climate data collection from satellite sensors 

Industrialization induced by population growth and increased human capacity has increased 
anthropogenic activities, which influences chemical composition of the troposphere, the lower part of 
the atmosphere. The resulting common pollutants are aerosols (particulate matter), ozone (O3), 
nitrogen oxides (NOx), carbon monoxide (CO) and sulphur dioxide (SO2). Therefore, estimation, 
monitoring, and mapping the spatial and spatiotemporal variability of these pollutants are of health, 
economic and societal importance. The use of ground-based or in-situ based methods for estimation 
have come a long way. Yet, these methods are limited in terms of spatial and temporal coverage, and 
are not cost effective.  

The application of satellite remote sensing for monitoring aerosols and tropospheric trace gases has 
existed since the late 70’s (Griggs 1975, Carlson and Wendling 1977, Mekler et al. 1977). Early 
applications include the use of AVHRR, Landsat, GEOS, TOMS products/instruments to monitor aerosols 
and tropospheric trace gases. Recall Fraser (1976) derived, with the aid of satellite measurements of 
nadir radiance from Landsat-1, the mass of particulates in a vertical column of dust outflow from North-
Western Africa. The Saharan dust has been in focus of aerosol optical depth estimation from radiance 
measured aboard the NOAA 3 satellite by the VHRR (Carlson and Wendling 1977).  

Since the launch of TOMS instrument in the 1978, there has been profound improvement in satellite 
remote sensing of tropospheric trace gases. The lack of scientific understanding of the implications of 
aerosols on climate initially impeded retrieval efforts for aerosol optical properties. Now, is it clear how 
atmospheric aerosols induce climate dynamics. Not only have the scientific tools for sharing and 
application improved, but also the development of new sensors and retrieval algorithms. 

In the Table 2, we present a non-exhaustive summary of available sensors and their products useful for 
air quality and climate studies  
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Table 2 Satellites, sensors and climate and air pollution parameters 

Instrument  Platform/Age
ncy  

Period Resolution 
at nadir 
(km) 

Global 
Coverage  

Spectral 
range 
(μm) 

Trace gases  Aerosol 
Optical 
properties  

Climate 
measures 

GOME[5] ERS-2/ESA 1995-
2003 

320 x 40 Yes: 3 
days 

0.23-0.79 NO2, HCHO, SO2, 

O3: (0.5-1.5) 

AOD  

POLDER ADEOS-II        
MOPITT[6] Terra/NASA 2000- 22 x 22 Yes:3.5 

days 
4.7 CO2: (0.5-2) NA  

MISR[7] Terra 2000- 18 x 18 Yes: 7 
days 

4λ: (0.45-
14.2) 

 AOD  

MODIS[8] Terra/NASA 2000- 10 x 10 Yes: 2 
days 

36λ: 
(0.14-
14.2) 

 AOD  

MODIS[8] Aqua/NASA 2002- 1 x 1 Yes: 2 
days 

  AOD  

AIRS[9] Aqua/NASA 2002- 14 x 14  Yes: 1 
day 

3.7-16 SO2 CO: (0.5-1.5) NA  

SCIAMACH
Y[10] 

ENVISAT/ESA 2002-
2012 

60 x 30 Yes: 6 
days 

0.23-2.3 NO2, HCHO, SO2,CO, 

O3:(0.5-1.5) 

AOD  

OMI[11] Aura/NASA 2004- 24 x13 Yes: 1 
day 

0.27-0.50 NO2, HCHO, SO2, O3: 
(0.5-1.5) 

AOD, 
AAOD, AI 

 

TES[12] Aura/NASA 2004- 8.5 x 5.3 Yes: 2  
days 

3.3-15.4 CO: (0.5-1.5), CH4, 

CO2, NH3, O3: (1-2) 

  

CALIOP CALIPSO 2006- 40 x 40 NO 0.53-1.06  >30  
GOME-
2[13] 

METOP/ESA/ 
EUMETSAT 

2006- 80 x 40 Yes: 1 .5 
day 

0.24-0.79 NO2, HCHO, SO2, O3: 
(0.5-1.5) 

AOD  

IASI[14] METOP/ESA 2006- 50 x 50 Yes: 0.5 
days 

3.6-15.5 SO2, CH4, CO2, NH3, 

CO: (0.5-1.5),  O3:(1-
2) 

NA  

AATSR ENVISAT 2002- 10 x 10 Yes: 5 
days 

555,659,
865,1610 

 AOD  

VIIRS  2011 0.75  0.41-12.5  AOD,AT, 
AE, AOT, 
APSP 

 

OCM Oceansat-1 2009 1 x 1: 
Global area 
coverage  

Yes: 2 
days 

0.402-
0.885 

 AOD LST, 
NDVI, 
EVI, 

TANSO-
FTS[15] 

GOSAT/ JAXA 2009- 10 x 10 Yes: 3 
days 

 CH4, CO2 NA  

TROPOMI Sentinel 
5/ESA 

2017- 7 x 7 Yes: daily 0.27-2.3 SO2, CH4, CO2, CO, 

O3, NO2, HCHO 

 
 

References referred to in the table 

 [5] Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, et al. The Global 
Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. Journal of the Atmospheric 
Sciences 1999;56:151–75. doi:10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2. 
[6] Drummond JR, Bailak GV, Mand G. The Measurements of Pollution in the Troposphere (MOPITT) 
Instrument. In: Lampropoulos GA, Chrostowski J, Measures RM, editors. Applications of Photonic Technology, 
Boston, MA: Springer US; 1995, p. 197–200. doi:10.1007/978-1-4757-9247-8_38. 
[7] Diner DJ, Beckert JC, Reilly TH, Bruegge CJ, Conel JE, Kahn RA, et al. Multi-angle Imaging 
SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience 
and Remote Sensing 1998;36:1072–87. doi:10.1109/36.700992. 
[8] Barnes WL, Pagano TS, Salomonson VV. Prelaunch characteristics of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions on Geoscience and Remote Sensing 1998;36:1088–
100. doi:10.1109/36.700993. 
[9] Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, McMillin LM, et al. AIRS/AMSU/HSB on the 
aqua mission: design, science objectives, data products, and processing systems. IEEE Transactions on 
Geoscience and Remote Sensing 2003;41:253–64. doi:10.1109/TGRS.2002.808356. 
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[10] Bovensmann H, Buchwitz M, Burrows JP, Reuter M, Krings T, Gerilowski K, et al. A remote sensing 
technique for global monitoring of power plant CO2 emissions from space and related applications. Atmospheric 
Measurement Techniques 2010;3:781–811. doi:10.5194/amt-3-781-2010. 
[11] Levelt PF, van den Oord GHJ, Dobber MR, Malkki A, Huib Visser, Johan de Vries, et al. The ozone 
monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing 2006;44:1093–101. 
doi:10.1109/TGRS.2006.872333. 
[12] Beer R, Glavich TA, Rider DM. Tropospheric emission spectrometer for the Earth Observing System’s 
Aura satellite. Appl Opt 2001;40:2356–2367. doi:10.1364/AO.40.002356. 
[13] Callies J, Corpaccioli E, Eisinger M, Hahne A, Lefebvre A. GOME-2 – Metop’s Second-Generation Sensor 
for Operational Ozone Monitoring 2000:9. 
[14] Clerbaux C, Boynard A, Clarisse L, George M, Hadji-Lazaro J, Herbin H, et al. Monitoring of atmospheric 
composition using the thermal infrared IASI/MetOp sounder. Atmospheric Chemistry and Physics 2009;9:6041–
6054. doi:10.5194/acp-9-6041-2009. 
[15] Kuze A, Suto H, Nakajima M, Hamazaki T. Thermal and near infrared sensor for carbon observation 
Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. 
Appl Opt 2009;48:6716–6733. doi:10.1364/AO.48.006716. 
 
 
2.3 Existing climate and air quality services and end user applications 

Since a couple of years companies started providing specific air quality and/or climate related services 
for end users and customers, such as governments, private business, and citizens. Services in this 
context are particular databases, tools and applications provided via the web or as a smartphone app. 
They are typically based on large climate or air quality related spatial data sets which are processed, 
and adapted to end user needs in order to bridge the gap between latest scientific and technological 
developments and real-world decision-making. Satellite data of air quality or climate parameters as 
well as of other relevant parameters (e.g. land use/cover, vegetation) is often merged for these 
applications with data sets form other sources, such as ground based measuring. Companies such as 
Acclimatise (http://www.acclimatise.uk.com/), Hermess (http://www.hermess.nl/) or [s]&[t] 
(http://www.stcorp.nl/) are examples of companies offering particular services. 

European Union's Earth Observation Programme (Copernicus) provides since long already various 
services mainly based on satellite data in the fields land use, climate change, emergency, security, 
environmental monitoring (https://www.copernicus.eu/en/services). The European Air Quality Portal 
(http://aqportal.discomap.eea.europa.eu/) facilitates the reporting of official air quality information 
from EU Member States and other EEA member and co-operating countries. LOTOS-EUROS 
(https://lotos-euros.tno.nl/) is an open-source chemical transport model (CTM) that provides a 
number of applications supporting scientific research, regulatory programmes and air quality 
forecasts. The NSL monitoring tool (https://www.nsl-monitoring.nl/) provides a map viewer for the 
entire Netherlands showing levels of air pollution along main roads corridors. Riga airTEXT 
(https://www.copernicus.eu/en/use-cases/airtext-air-quality-information-glance) makes air quality 
forecasts for the residents of Riga, Latvia, available up to three days ahead online (www.rigaairtext.lv) 
and via a free phone app.  AIR-PORTAL (https://airportal.stcorp.nl/) is a new service that shows air 
quality levels at high resolution, and allows users to perform online specific analyses of the data for 
selected urban areas in Europe.   

http://www.acclimatise.uk.com/
http://www.hermess.nl/
http://www.stcorp.nl/
https://www.copernicus.eu/en/services
http://aqportal.discomap.eea.europa.eu/
https://lotos-euros.tno.nl/
https://www.nsl-monitoring.nl/
https://www.copernicus.eu/en/use-cases/airtext-air-quality-information-glance
http://www.rigaairtext.lv/
https://airportal.stcorp.nl/
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3. Air quality and climate data: User inventory and fields of applications  

The following sectors and fields of applications using air quality and climate data derived from 
satellites will be distinguished in the study.  

- Climate studies (atmospheric climate parameters) 
- Epidemiologic and public health studies related to air quality (relative risk assessment, disease 

mapping) 
- Spatial and urban planning (air quality planning, air quality regulations, climate change 

adaptation planning) 
- Environmental monitoring and management (unconventional extraction and emissions, long-

term trends, etc.) 
- Air dispersion modelling 

It needs to be mentioned, that between the different fields of applications identified here various 
links, synergies and overlaps exist. For instance air quality, particularly air dispersion models, are often 
used in public health studies, the latter makes often use of results from environmental monitoring 
studies, and urban planning and public health sometimes collaborate for creating healthy urban areas. 
One main difference is that some of the fields already make regular use of satellite data while other 
fields, such as urban planning, hardly use satellite data so far and if so, only indirectly by using results 
of air quality models. Main reason are the different scales at which these applications operate, from 
global to regional for environmental monitoring studies to sub-local/neighbourhood level of health 
inequalities or air quality planning.  

 

3.1 Use of satellite data for climate studies 

After the launch of the vanguard-2 satellite in 1959, satellite remote sensing has become a leading 
research method in climate studies (Yates 1977, Li 2011). Unlike ground control stations, satellite 
remote sensing easily allows observations of space-time terrestrial, oceanic and atmospheric processes. 
Despite the lack of planning for continuity of measurements of many of the key climate variables, it is 
evident that the future of the global climate observing system depends critically upon a major satellite 
component. Satellites now provide a vital means of obtaining observations of the climate system from 
a near global perspective and for comparing the behaviour of different parts of the globe. Despite the 
concerns about the suitability of satellite data for monitoring and understanding climate change (Christy 
et al. 1997), satellite data are widely used for developing prevention, mitigation and adaptation 
measures to cope with the impact of climate change across the atmospheric, oceanic and terrestrial 
domains (Joyce et al. 2009). The value of climate related satellite data goes beyond climate change and 
systems studies. For instance, the value of a validated, routinely produced global precipitation product 
would not be limited to weather and climate forecasts but would also have a considerable impact on 
agricultural planning, forestry and water management (GCOS 2011). Nevertheless, some possible biases 
remain in satellite data, such as satellite images being contaminated by clouds or atmospheric aerosols. 
Hence, in situ data are also critical for not only satellite calibration and validation but also for any final 
bias corrections needed at the time of any analysis (Reynolds et al. 2002).  
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The Global Climate Observing System (GCOS) enumerates essential climate variables (ECV) under the 
three main domains. The ECVs of the atmospheric domain, either over land or sea, includes surface 
wind speed and direction, precipitation, upper-air temperature, upper-air wind speed and direction, 
water vapour, cloud properties, Earth radiation budget (including solar irradiance), carbon dioxide, 
methane and other long-lived greenhouse gases, and ozone and aerosol properties, supported by their 
precursors. The oceanic domain has fewer ECV’s, which include sea-surface temperature; sea-surface 
salinity; sea level; sea state; sea ice; ocean colour. The third domain, the terrestrial domain, includes 
lakes; snow cover; glaciers and ice caps, ice sheets, albedo, land cover (including vegetation type), 
fraction of Absorbed Photosynthetically Active Radiation (FAPAR); Leaf Area Index (LAI); above-ground 
biomass; fire disturbance; soil moisture.  

According to the GCOS, 26 out of 50 listed essential climate variables (ECVs) are significantly dependent 
on satellite observations. Climate studies require long term and large spatial coverage data. The limited 
availability and spatial coverage of ground control stations naturally appeals for the use of satellite data 
for climate studies. Satellite data provides an independent way to investigate global temperature 
trends, particularly at the ocean surface and in the atmosphere (Yang et al. 2013). Currently, the key 
operational issues of satellite data for climate studies, as indicated by the GCOS, are continuity, 
homogeneity and overlap of satellite observations; enhanced orbit control; calibration and instrument 
characterization, and validation of products; sampling strategy; and sustained generation of products, 
data analysis, and archiving. Yang et al. (2013) have categorized the ECV’s into three important study 
areas of climate studies; global warming, snow and ice, sea-level changes, solar radiation, aerosols, 
water vapour and precipitation, and clouds studies. In this study on available satellite data and products 
and user needs for climate studies and reflect on operational issues that have been raised in relation to 
that. current studies.  

Ground control stations are limited in both coverage and scale, hence inadequate to monitor the earths 
changing climate, making satellite remote sensing a vital resource. Majority of the ECV’s can be 
monitored using satellite remote sensing. Taylor (2012) pointed out that satellite sensors do have the 
required accuracy for monitoring cloud trends. This supports the conclusion drawn by Kahn et al. (2011) 
that finer spatial resolution requirements must be considered for future satellite observations for 
temperature and water vapour. Important limitations also include the technical characteristics of the 
sensors themselves. Some satellites cannot stand the test of time in terms of the loss of radiometric 
sensitivity. How well the uncertainties associated with the sensors are catered for is therefore critical, 
especially the accompanying drift with time. In fact, Lea et al. (2012) concluded that the Spectral 
Irradiance Monitor’s radically different solar variability characterization is a consequence of undetected 
instrument sensitivity drifts, not true solar spectrum changes. 

Temporal resolution of the satellite data has been a recurring limitation in our review that limits the 
utilization of remote sensing data for climate studies. We agree with the proposal by Joyce et al. (2012) 
for the provision of constellation of small satellites that observe the same location over a given time 
interval. In addition, retrieval methodologies can lead to either underestimation or overestimation of 
particular climate/air quality parameters. For instance, in a follow-up study (Benestad et al. 2009), a 
nearly negligible percentage was found to be the contribution of solar radiation on climate change after 
Scafetta et al. (2006) had estimated 25–35% of the 1980–2000 global warming.   
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3.2 Relationships between the atmospheric observation of climate and air quality parameters 

There is documented evidence on the interplay between air pollution and climate. Aerosols in particular 
are deemed crucial for long-term climate predictions. Bartlett et al. (2017) indicate that anthropogenic 
aerosols have significant climate impacts against a background of greenhouse gas-induced climate 
change. The interplay between aerosols and climate dwells on the emission sources, atmospheric 
properties, processes and chemistry, and mitigation options (von Schneidemesser et al. 2015). Vehicles, 
for instance which are common emissions sources of particulate matter in the atmosphere, also emit 
greenhouse gases like nitrogen and oxides. Suspended fine solid or liquid particles, aerosols, do not only 
pose air quality problems but also have several climate forcing properties. The climate-inducing 
property of aerosols depends on its response or interference with incoming solar radiation, either 
through absorption or scattering. The radiation absorbed by black particle contributes to warming the 
atmosphere, and that scattered by other aerosol components tends to cool the earth’s surface (Ramana 
et al. 2010, Banerjee et al. 2018, Schwartz and Andreae 1996). The aerosol optical property (AOD) has 
often been the focus of estimating aerosol quantity in the atmosphere, which is derived from 
observations recorded by visible and infrared optical sensors on board various satellites. Tropospheric 
ozone, a secondary air pollutant, is formed by the accumulation of and combination of nitrogen oxides. 
The biophysical reactions between some greenhouse gases like ozone and short lived air pollutants like 
aerosols is likely to immerge as the most important climate impacts (Unger and Pan 2012). 
Improvements in energy efficiency as mitigation options influence both air quality and the earth climate. 
This influence, however, will not necessary be advantageous for both. For instance, the use of wood 
biomass burning as alternate residential heating though reduces CO2 emissions could significantly 
increase particulate matter emissions (Haluza et al. 2012). Air pollution studies such as modelling the 
spatial distribution of particulate matter or aerosol have contributed significantly to the understanding 
of such atmospheric climate dynamics. Thus, studying the dynamics of aerosols links together, either 
explicitly or implicitly, the dynamics of the climate.  

While many studies have associated satellite retrieved AOD with PM concentrations, few have 
associated the climate forcing properties of AOD with climate variation. Zhang et al. (2016) evaluated 
the degree at solar radiation forcing from a smoke plume introduces daytime surface cooling using 
MODIS retrieved AOT and estimated smoke-aerosol induced daytime direct surface cooling efficiency 
to be ∼ −1.5 ◦C per 1.0 AOT. Benedetti and Vitart (2018) observed that the interactive aerosols have 
the capability of improving the sub-seasonal prediction at the monthly scales for the spring/summer 
season. That said, numerical predictions of aerosol properties have become important input data source 
for both regional and global climate observers. As a result of increasing attention paid to the effects of 
aerosols in climate dynamics, Li et al. (2009) articulated key uncertain factors in the retrieval of AOD for 
some widely used satellite aerosol products including the AVHRR, TOMS, MODIS, MISR. To better 
understand cloud formation variability, Tuccella et al. (2019) incorporated the indirect effects of MODIS 
retrieved aerosols in a Weather Research and Forecasting (WRF) model. Ali et al. (2019) observed 
increasing trends of MODIS retrieved AOD with cloud properties. Although these studies have 
conducted at the local levels, they indicate the high potential to further explore the effectiveness of 
AOD properties for climatic predictions.  

Current literature has not clearly defined the metrics of user needs for AOD inventories or models 
necessary for enhanced climate predictions. This could be attributed to the different temporal and 
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spatial scales of climate predictions. Additionally, the context of user needs of aerosol modelling for 
climate predictions places much emphasis on emissions scenarios, hence requirements will be different 
(Benedetti et al. 2018). The requirements also differ for global and regional modelling and applications, 
although certain requirements may apply to both regional and global applications. Conclusions from 
Cowie et al. (2015) and Bergametti et al. (2017) suggest that hourly or better time resolution is required 
to model the desert dust aerosols given the short lifetime. Requirements for better vertical resolution 
is deemed necessary though no provision for the exact metrics has been discussed in literature, to the 
best of our knowledge, as are those for particle size distribution and multiple wave lengths. An ideal 
spatial resolution requirement has been argued to be as good as the modelling requirements. For global 
modelling, a required spatial resolution of 50km is acceptable; higher resolution presents additional 
benefits but not without computational challenge (Wang et al. 2014). The use of population as proxy in 
current modelling approaches has led to the suggested requirement of 10 km spatial resolution for 
global modelling and less than 1 km for regional and urban models given that the scale of emission 
sources are very small (Benedetti et al. 2018, Mailler et al. 2017). The radiative efficiency of aerosols 
which depends on properties such as size and composition play a significant role in their cloud 
condensing capabilities. This instigates user needs for particle size resolution, translated into particle 
size apportioning.    

 

3.3 Use of satellite data in health related studies 

There are numerous studies on the health effects of air pollution. We identified review papers 
between 2010 and 2018 on air quality, related to satellite data and health. Some studies are directly 
related to modelling health impacts, others are focused on air quality model building with a more 
indirect purpose to use it in health effect studies. In some studies in-situ data is used for assessing 
health effects, and satellite data is mentioned with its pros and cons.  

In health studies, the most important reason for the use of air quality data is to estimate the exposure 
of humans to air pollutant concentrations, in order to link this exposure to health outcomes, morbidity 
or mortality. Depending on the type of study, individual exposure or population exposure is needed, 
and either short-term or long-term exposure data is required. Hoek (2017) extensively reviewed 
methods for assessing long-term exposure to outdoor air pollutants, amongst which satellite data. 
Satellite data has the limitation of measuring an entire vertical column while the interest is in 
breathing height. Ozone cannot be measured at surface level by satellites, because the levels in the 
stratosphere are very high compared to those at the surface. For NO2 and PM there is a moderate 
correlation between satellite observations and in-situ measurements at background locations. The 
spatial variability of NO2 is too high to map NO2 on a grid of 1x1 km. Limitations of satellite data are 
the temporally and spatially varying relationship between column and surface concentrations, the 
spatial resolution, cloud cover interference, and characterization of a single time of the day. Sorek-
Hamer, Just, and Kloog (2016) found similar results and add that AOD on its own does not represent 
the size distribution and toxicity of particulate matter.  

The global coverage of satellite products and the resulting ability to apply the same method to the 
entire globe makes satellite data an interesting method for global comparisons of exposure (Matthias 
et al., 2018; Molina et al., 2010; Monks et al., 2015; Sorek-Hamer et al., 2016). Other field of 
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application are exposure studies in rural areas or developing countries where no in-situ measurements 
exist (Marlier, Jina, Kinney, & DeFries, 2016), and as a complementary approach for large areas (Marć, 
Tobiszewski, Zabiegała, Guardia, & Namieśnik, 2015). Satellite data is however mostly used in 
developed countries, with the resources and knowledge to process the data (Prasad, Gray, Ross, & 
Kano, 2016). Jerrett, Gale, and Kontgis (2010) argue that the technology exists to use LiDAR at 1x1 
meter resolution, but that the accuracy is currently limited by oversensitivity to coarse particles. For 
cohort studies, satellite data has a good temporal resolution and the advantage of long historical 
records (Vedal, Han, Xu, Szpiro, & Bai, 2017). To improve temporal resolution for short-term exposure 
estimation, geostationary satellites can be of great benefit. These satellites obtain data at hourly or 
sub-hourly resolution, and even near real-time data acquisition is possible (Sowden, Mueller, & Blake, 
2018; Zhu et al., 2015).  

Land use regression (LUR) models are typically used to model exposure at a finer resolution using land 
use covariates and in-situ measurements. Using satellite images directly for exposure estimates gives 
some sources of uncertainty and error, due to the measurement height, the derivation of PM2.5 
concentrations from AOD, the lack of spatial precision, and interference by cloud cover and nearby 
water (Samoli & Butland, 2017). Satellite images and dispersion model outcomes can however be 
integrated into land use regression models to model NO2 and PM2.5 at 100x100m scales. With growing 
interest in artificial intelligence and deep learning, also the interest in combining different data 
sources for exposure estimation is growing (Vopham, Hart, Laden, & Chiang, 2018).  

For climate-related health effects, urban heat islands (UHI) are of interest. Satellite data, especially on 
land surface temperature (LST) is commonly used in studies on urban heat islands: e.g. 46% of the 
studies on UHI in South Asia were based on satellite observations (Kotharkar, Ramesh, & Bagade, 
2018). Satellite images have increasingly been used since 2000, because of free availability of data. 
The main limitations for this application are the time of overpass, presence of cloud cover, viewing 
geometry, and spatio-temporal resolution. Mushore, Odindi, Dube, Matongera, and Mutanga (2017) 
propose to integrate high spatial resolution satellite data with high temporal and low spatial resolution 
in-situ sensors in the future. In the future, the variability in seasonal and long-term urban thermal 
patterns should be monitored.  

Weigand et al. (2019) show in a recent publication that modern earth observation data are an 
important data source for research on environmental justice and health. The study highlights potential 
benefits of remote sensing data to environmental justice research. Among them are the derivation of 
micro-climatic properties and land surface temperature estimates, the characterization of the urban 
structure and density as well as the distribution of air pollutants. Furthermore, the assessment of 
certain health impacts, which cannot be directly derived from physical measurements, can greatly 
benefit from highly accurate proxy information on e.g. the degree of urbanity, urban structure or 
urban heat islands. 

 

3.4 Use of satellite data in urban planning  

The field of urban planning encompasses all technical and political processes concerned with the 
development and design of land use and the built environment in urban areas and regions, including 
transport and technical infrastructure such as transportation, communications, and water, energy and 
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wastewater distribution networks. Results of these urban planning processes are development 
strategies and plans at different scales from sub-local (block, neighbourhood level) to regional that 
outline and demarcate the future development of urban areas.  

Air quality and climate issues in cities have become significantly more important in recent years in 
urban planning related activities. On the one hand this is because of the increasing impacts on cities 
from environmental stressors that manifest in heat stress and heat islands in certain parts of the inner 
cities as well as high levels of air pollution affecting the living quality in many cities. On the other hand 
this is also because of the increasing insight that many human activities taking place in cities 
significantly contribute to their ever increasing environmental stress and that the future shape and 
structures of cities and urban regions will have significant effects on the reduction of this stress. The 
latter resulted in an increasing collaboration between urban planning and public health, while 
increasing climate stress in cities lead to manifold studies and projects on urban climate adaptation, 
e.g. by means of ecosystem services and nature based solutions for cities. 

To reverse the above described trend, the European Commission approved a directive to improve the 
air quality in its member states in 2008. They need to develop air quality plans (AQP) for zones and 
agglomerations where air quality limit values are exceeded, in order to implement pollution control 
strategies and meet the legal requirements (Miranda et al. 2015). The law enforcement relies on a 
monitoring and reporting system to inform the European Commission and the public. For the various 
air pollutants so called air quality targets and methods of assessments are prescribed in the EU 
directive (see Gemmer and Bo 2013). The EU directive distinguishes between so-called limit values 
and target values. Limit values are legally binding but allow limited short-term exceedances. A target 
value has to be attained as far as possible by the attainment date and compliance is checked but not 
legally binding (Gemmer and Bo 2013). Other institutions dealing with air quality issues, such as the 
WHO, have published other air quality standards and guidelines, which are often more strict and 
ambitious then the EU directive, but not legally binding. (WHO 2017). 

Pollution by particulate matter (PM), nitrogen dioxide (NO2) and Ozone (O3) are the most important air 
quality stressors in cities nowadays. Levels of air pollution vary very much within cities at small scale 
due to diverse urban forms of the city. For example, average concentrations of air pollutants are 
generally considerably higher at street locations compared to urban background with average ratios of 
1.63 for NO2 and 1.93 for NOx and 1.14, 1.23 and 1.42 respectively for PM2.5, PM10 and PMcoarse, in 
Europe (Nieuwenhuijsen et al. 2016). Sources of air pollution in cities are next to the amount of 
motorized, fuel based transport, also residential heating based on fossil fuels, and the density of 
industrial production. Next to this, also various physical factors of the urban form contribute to the 
spatial variation of air pollution within cities, such as the density and height of buildings, the 
availability of green space and water (green and blue infrastructure), and the availability of air 
corridors enabling a better ventilation of the city (Nieuwenhuijsen et al. 2016).  

Air quality data used for air quality planning in cities often results from in situ measurements with 
either active or passive collectors, usually in combination with air quality modelling (see section 3.6). 
The 2008 European Air Quality Directive (AQD) (2008/50/EC) encourages the use of models in 
combination with monitoring in a range of applications (Thunis et al. 2016). However, Miranda et al. 
(2015) found that some cities in Europe do not include the use of air quality models, considering the 
monitoring network as spatially representative of the study domain (e.g. Lisbon Region, Riga, Malta). 
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In the scope of air pollution mitigation strategies, integrated assessment modelling (IAM) 
methodologies have received increasing attention both in the scientific literature as well as in the 
European air quality directives (Thunis et al. 2016). IAM include tools that allow a user to design air 
quality plans taking into consideration the impacts of different policy options. 

Data of air quality and climate directly derived from satellite sensors is hardly being used in urban 
planning/air quality planning related studies up to now. However, recent scholars identify the 
opportunity for using satellite data for either for informing air dispersion models or for data fusion 
methods which take a variety of data sources such as ground based monitoring, air quality modelling, 
satellite retrieved data and/or any other spatially distributed data relevant to air quality into account. 

 

3.5 Use of satellite data for environmental monitoring 

Environmental monitoring studies observe, among others, factors of air quality and climate 
parameters at global to regional scales. Due to its rather coarse scales, environmental monitoring of 
air quality makes frequent use of satellite borne air quality data. Current applications can be 
distinguished into rather short-term changes of air quality parameters resulting from single or 
unexpected events and the monitoring of long-term trends of ambient pollutant concentrations. The 
former includes, among others, tracking of pollutant plumes from agriculture and wildfire (Duncan et 
al. 2014), emissions and transportation of dust and aerosols resulting from mining activities (Csavina 
et al. 2012), monitoring of regional differences of black carbon from biomass based cooking (Soneja et 
al. 2016), and identification of oil and natural gas emission sources (Field, Soltis, & Murphy, 2014). 
Monitoring of long term trends in air quality is mainly used for developing environmental indicators 
(Hsu et al. 2013), which in turn then can be used to inform high level policy and decision making (de 
Sherbinin et al. 2014). With respect to the latter, the authors stress the need also for solid ground 
truth datasets to bolster the applicability of satellite-based indicators, because “decision makers may 
still be understandably hesitant to rely on satellite-based indicators without comparisons” (de 
Sherbinin et al. 2014). 

Satellite data is very useful for monitoring the distribution and transport of particulate matter at 
continental scale (Youssouf et al., 2014). Chen et al. (2017) evaluated the impacts of biomass burning 
on air quality, health and climate. For this purpose, satellite data has advantages over in-situ 
measurements. Satellite images can be used for different aerosol optical and physical properties, 
precursors and trace gases, and measure an entire vertical profile. They allow for observation of the 
number of fires, locations of fires, smoke-plume distribution, injection height, fire radiative power, 
long-range transport, and mapping of burnt areas. Rehman, Ahmed, Praveen, Kar, and Ramanathan 
(2011) however showed that studies on black carbon (BC) emissions from biomass burning and fossil 
fuels based on satellite images often underestimate the real concentrations. The reason behind this is 
that there is only one measurement a day available, outside BC peak time. There is a need for 
understanding of small-scale variation and the link between indoor and outdoor pollution to improve 
emission profiles from remote sensing applications (Soneja, Tielsch, Khatry, Curriero, & Breysse, 2016). 
Liu, Pereira, Uhl, Bravo, and Bell (2015) systematically reviewed 61 papers on physical health impacts 
from non-occupational exposure to wildfire smoke, of which 11 papers were using satellite imagery 



18 
 

for exposure assessment. Most studies use at least five years of data. In the future they expect more 
advanced models based on satellite images.  

Monitoring pollutant plumes is also done in the case of mining operations, where the importance of 
metals and metalloids in atmospheric dust is studied (Csavina et al., 2012). There, the main interest is 
in particle diameter and composition, as this relates to the distance travelled in the environment. For 
future research, the priority is on fine size particles, which pose the highest health risks. Satellite 
imagery is also used for identification of oil and natural gas emission sources and identifying areas 
with elevated concentrations. Improvement of spatial resolution and vertical sensitivity would 
improve monitoring of unconventional oil and natural gas production in the future (Field, Soltis, & 
Murphy, 2014). For monitoring atmospheric aerosols, MODIS Deep Blue is popular because of its long-
term operation, high accuracy of AOD measurements, and twice daily coverage of the earth. For 
monitoring within cities a finer spatial resolution is however required, in combination with a good 
accuracy (Kanniah et al., 2016). A finer spatial resolution is also required for modelling small-scale 
dynamical processes for evaluation of the contribution of anthropogenic and natural dust sources to 
emission rates (Ginoux, Prospero, Gill, Hsu, & Zhao, 2012). For hydrological dust sources, longer time 
series are needed. AOD performance is dependent on individual tiles of satellite imagery.  

Smoke plumes can also be detected using RGB satellite imagery, and linked to in-situ measurements of 
air pollution. Based on the satellite images, visible plumes are drawn by hand by analysts. A limitation 
is that the plumes are invisible during cloud cover and during the night. Also only 1 or 2 times a day an 
image is visible, while the plume moves and may cover a larger area (Larsen, Reich, Ruminski, & 
Rappold, 2018). Aerosol composition is of importance for human exposure and health. Future needs 
for forecasting atmospheric composition include measurements of aerosol mass, size distribution, 
chemical composition, AOD at multiple wavelengths, absorption AOD (AAOD), ratio of vertically 
integrated mass to AOD, and the vertical distribution of aerosol extinction (Benedetti et al., 2018). 

Satellite data is also used for air quality forecasting in the US. Satellite imagery is accessed on a daily 
basis by state air quality agencies, combined with surface monitor information to produce a daily 
report that forecasts air quality during the summer wildfire season (Duncan et al. 2014). 

 

3.6 Use of satellite data for air dispersion modelling 

Air dispersion models are used to determine the origin and transport pathways of the air mass or 
atmospheric trace gases prior to its arrival at a given place. The main purpose of air dispersion models 
is to incorporate emission data and basic meteorological/atmospheric data with numerical processing 
to estimate concentrations of pollutants over space and time. In contrast to land use regression, 
dispersion models have the added advantage of identifying the sources of emissions, although they are 
both able to assess exposure to such gases. Typical users of air dispersion models are practitioners, 
either from the health sector analysing changes of air quality and impacts on health outcomes (e.g. 
certain diseases or mortality), or from urban planning assessing environmental or health impacts of a 
planned intervention, e.g. the building of a new transport connection.  

The use of dispersion models to assess exposure to trace gases has increased steadily over the years. 
The role of satellite data as either source input data or for parameter estimation validation for dispersion 
models has long been known. Back in the 70’s, Kibler and Suttles (1977) compared measured LIDAR 
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sensor data with dispersion-model outputs through a numerical estimation procedure to yield 
parameter estimates that best fit the data. Lioy et al. (1980) also analysed the atmospheric distribution 
of sulphate using backward trajectory, satellite imagery and ground station measurements. Singal 
(1993) used a Gaussian dispersion model to compute pollution concentration downwind of an emission 
source with the help of SODAR determined data.  

Dispersion models are based upon physical principles and actual emission data. Relying generally on 
Gaussian plume equations, dispersion models require pollution, meteorological, and emission data. 
Routinely collected data are unavailable for most countries, and even among those countries, that have 
collected such data, these are spatially sparse. Data from satellite remote sensing has become a great 
alternative. The relevance of satellite data for air quality and dispersion models is its quick and easy 
access to the sources term, i.e. an assessment of the rate at which the pollutant is injected into the 
atmosphere. As noted in Jerret et al. (2005), the use of satellite remote sensing for exposure assessment 
appears to be a promising avenue for future research, particularly in low-income countries that may 
lack the resources to implement extensive ground monitoring programs. The required pollution, 
emission, and meteorological information can be extracted from satellite data, which are readily and 
largely available.  

As highlighted by El-Harbawi et al. (2013), the four main factors that influence the transport, dilution, 
and dispersion of air pollutants can be grouped as emission or source characteristics, nature of pollutant 
material, meteorological characteristics, and, effects of terrain and anthropogenic structures. Either of 
these factors are accessible and extractable from satellite data. In what follows, we focus on exemplary 
air quality dispersion models that incorporate satellite data as either source term or for evaluation 
purposes.  

Rolph et al. (2009) used the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to 
calculate the transport, dispersion, and deposition of the emitted particulate matter, and carried out 
model evaluation by comparing predicted smoke levels with actual smoke detected from satellites by 
the HMS and the Geostationary Operational Environmental Satellite (GOES) Aerosol/Smoke Product. 
Henderson et al. (2008) used aerosol optical thickness (AOT) and colour imagery product from MODIS 
for further evaluation. Their focus was to describe an approach that makes plume dispersion models 
more accessible for public health applications by simplifying and evaluating them with MODIS fire 
detection, aerosol, and true colour products. In northern Iraq, Bjoernham et al. (2017) showed that 
remote sensing through satellite images of SO2 can be utilized to provide a rapid source estimate for 
dispersion modelling.  As far back as in the 80’s, the National Environmental Research Institute (NERI) 
in Denmark developed an OML (“Operationelle Meteorologiske Luftkvalitetsmodeller” – Operational 
Meteorological Air Quality Model) local-scale atmospheric dispersion model (Olsen 1995a, b). Using 
OML and satellite data, specifically tropospheric-ozone from OMI, Grigoraş et al (2016) assessed the 
surface-ozone concentration in Bucharest, Romania. They highlighted that estimated tropospheric-
ozone from satellite can be used as input in OML model and that satellite data can improve the air 
quality assessment on local level. Lowry et al. (2016) have used the UK Meteorological Office Numerical 
Atmospheric-dispersion Modelling Environment (NAME) to investigate origins of air masses arriving at 
Egham, England, with both near-background and higher CO contents. Here, CO extracted from the 
Measurements of Pollution in the Troposphere (MOPITT) satellite data were used to assess the model 
consistency. De Hoogh et al. (2018) incorporated MODIS AOD observations and dispersion model 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/satellite-image
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estimates to develop and evaluate fine spatial scale land use regression models for four major health 
relevant air pollutants (PM2.5, NO2, BC, O3) across Europe. Using evapotranspiration information 
extracted from MODIS, Rahman et al. (2019) showed that the sensible heat flux was dominating during 
dry periods and the latent heat flux was dominating during the wet periods, and the rate of dominance 
was controlled by the availability of water, vegetation dynamics and weather conditions. Based on AOD 
and AE extracted from MODIS and CALIPSO sensors, and hourly environmental monitoring 
measurements from Chinese cities and East Asian meteorological observation stations, Zhang et al. 
(2018) analysed the spatial and temporal characteristics of dust dispersion as well as its associated 
impact on the Asia-Pacific region. The authors investigated the transport of smoke aerosols and 
quantified the impact of Russian forest fires on Asia using AOD and NDVI from MODIS and CALIPSO. Yu 
et al. (2018) applied spatial average, inverse distance weighting, kriging, discontinuous tessellation, 
natural neighbour tessellation with interpolation, land use regression, downscaled MODIS-derived AOD, 
dispersion model, and chemical transport model to study the air quality dispersion in Atlanta, Georgia, 
USA.  

Back and forward trajectory analysis have been used to aid identifying and selecting measurements 
taken under and outside of the volcanic SO2 plume using observations from OMI GOME-2 (Zerefos et 
al. 2017). The transport of NOx emitted in East Asia was also demonstrated using OMI satellite data and 
surface in situ measurements and Lagrangian particle dispersion model simulations (Lee et al. 2014). 
Langford et al. (2017) also examined the contributions of stratosphere-to-troposphere transport (STT) 
and transported AOD, O3, and CO exceedances using MODIS. With GOME-2 and OMI data being readily 
available, a rapid source term estimation was made to determine the release rate of SO2 from an 
industrial accident and was used for forecasting of SO2 concentration in the region by use of dispersion 
models (Bjoernham et al. 2017).  

Satellite remote sensing has a promising future for air dispersion modelling, particularly in low-income 
countries that may lack the resources to implement extensive ground monitoring programs. The role of 
satellite data is either as source input data or for parameter estimation validation for dispersion models. 
Synthesizing the various literature, we deduce that the prominent air quality variable for dispersion 
modelling is AOD. The AOD is retrievable from the majority of the sensors available, of which the 
retrievals from MODIS are most commonly used. Specific user needs and limitations relating to spatial 
and temporal resolutions have rarely been indicated in literature; perhaps because the atmospheric life-
span of AOD is short (days to weeks) and highly localized in space (von Schneidemesser et al. 2015). 
Being either an input or validation source, the spatial resolution requirements for air dispersion models 
may be deduced from Thompson and Selin (2012). Here, no significant differences in model outputs 
were observed for 2, 4, and 12 km resolution, but over-prediction for 36 km resolution.   
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4 User needs for air quality and climate data 

In the following, we present the main findings from the expert interviews structured by the main 
questions discussed with the experts and enriched with matching findings from the literature review. 
The codes given at the end of each statement indicate the various experts in anonymized form.  

 

1) What are the main advantages of satellite based measurements of air quality and climate data? 
- Spatial temporal coverage and resolution for studies at national to regional scale (DE1, NL6), 

countrywide coverage of similar data acquisition (NL9, NL2, NL4) 
- Temporal resolution good for annual averages for long-term exposure studies (GH) and daily 

values are enough for legislation purposes (INT4) 
- In combination with model data, 1x1 km resolution possible (NL1) or even 100x100m in land 

use regression models (Samoli & Butland, 2017) 
- Important data source for background concentrations to improve models (NL1, DE2) 
- Validation and source apportionment when peaks are measured by low-cost in-situ sensors 

(NL6), e.g. local source or pollutant cloud 
- Detection of unknown air pollution sources in developing countries without emission 

inventories (NL3) 
- Monitoring of ozone layer and effect of ozone-depleting substances (NL3) 
- Availability of data within a few days (NL2) 
- Cubesat: (https://www.cubesat.org/): mini satellites, low cost, chance to launch a number of 

them, in order to achieve a better temporal coverage/resolution (NL11) 
- Standardized, uniform measurements worldwide (NL11) (Matthias et al., 2018; Molina et al., 

2010; Monks et al., 2015; Sorek-Hamer, Just, & Kloog, 2016) 
- Large spatial coverage area on continental/global scale (Youssouf et al., 2014) 
- Cheap source of data in developing countries or rural areas where no in-situ measurements 

exist (INT4), e.g. for exposure studies (Marć, Tobiszewski, Zabiegała, Guardia, & Namieśnik, 
2015; Marlier, Jina, Kinney, & DeFries, 2016) or detecting urban heat islands based on land 
surface temperature (Kotharkar, Ramesh, & Bagade, 2018) 

- Detection and forecasting of transboundary pollutant transport for source apportionment 
(INT4) 

- Long-term historical records of data (Kanniah et al., 2016; Vedal, Han, Xu, Szpiro, & Bai, 2017) 
- Measuring the entire vertical column at once (Youssouf et al., 2014) -> both an advantage and 

a disadvantage, depending on the application 

 

2) What are disadvantages/shortcomings of satellite based measurements of air quality and climate 
data? 
- Data gaps when e.g. clouds are occurring (DE1) (Hoek, 2017; Kotharkar et al., 2018; Larsen, 

Reich, Ruminski, & Rappold, 2018; Rehman, Ahmed, Praveen, Kar, & Ramanathan, 2011; 
Samoli & Butland, 2017; Sorek-Hamer et al., 2016) 

- Lacking spatial resolution for more finer studies, e.g. at city level (DE1, NL7, NL2, NL1, NL4) 
(Hoek, 2017; Kanniah et al., 2016; Kotharkar et al., 2018; Samoli & Butland, 2017; Sorek-
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Hamer et al., 2016), for validation purposes (NL5) and for modelling small-scale dynamical 
processes for evaluation of the contribution of anthropogenic and natural dust sources to 
emission rates (Ginoux, Prospero, Gill, Hsu, & Zhao, 2012) 

- Measurements only once or twice a day is very crude particular for experts and practitioners 
from health and epidemiology resp. those developing and running air dispersion models, 
because they are typically interested in the change of air quality over the day or the exposure 
of the population to low air quality during peak hours (INT1, NL1, NL2, NL5) (Hoek, 2017; 
Kotharkar et al., 2018; Larsen et al., 2018; Sorek-Hamer et al., 2016) 

- Relationship satellite images and ground-level concentrations not accurately defined and 
varies in space and time (NL1, NL7) (Ginoux et al., 2012; Hoek, 2017; Samoli & Butland, 2017; 
Sorek-Hamer et al., 2016) 

- Sulphur (from ships) hard to measure because of water vapour interference (NL5) 
- Measuring concentrations of pollutants (gases) at ground level not possible (NL11) because an 

entire vertical column is measured and because ozone levels in stratosphere are very high 
compared to ground level (Hoek, 2017) 

- Nice to have a geostationary satellite to improve temporal resolution (Sowden, Mueller, & 
Blake, 2018; Zhu et al., 2015), but because of the height needed, the resolution is not very 
good (NL11, NL10) 

- Interference of nearby water (NL1) (Samoli & Butland, 2017) 

 

3)  Comparison of in-situ measurements vs. satellite based measurements of air quality and climate 
data 

- It’s not so much a question of either or, but more of how to use both data sources together 
o E.g. AQ satellite data for background levels of air pollution together with ground 

based measurements for actual pollution levels (DE2, NL6) 
o AQ satellite data either as input parameter to or as for calibration of air 

quality/dispersion models. 
o Growing interest in combining datasets for exposure estimation with the growing 

interest in artificial intelligence and deep learning (Vopham, Hart, Laden, & Chiang, 
2018) 

o Integrate high spatial resolution satellite data with high temporal but low spatial 
resolution in-situ sensors (Mushore, Odindi, Dube, Matongera, & Mutanga, 2017) 

 

4) More details of current measurements of air quality and climate data required by users 
- Better spatiotemporal resolution:  

o better spatial resolution required by health/epidemiology experts and researchers 
around important sources of pollutions (e.g. highways, industrial areas, ships) (DE1, 
NL2, NL5) and especially for pollutants with high spatial variability such as NO2 (NL1) 
(Hoek, 2017) which are difficult to measure with low-cost sensors (NL7) 

o for models 1x1 or 2x2 km (NL3), for megacities in developing countries at least 1x1 km  
but preferably smaller (INT4), in European cities for urban planning and health impact 
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assessment issues ideally 100 x 100 m (INT1, NL7, DE3), or even 25 x 25 m (INT1), for 
transport planning 10-20 m (NL9) 

o hourly resolution needed for short-term health effect studies (NL1, INT1), modelling 
(NL2) and source apportionment (NL7), for better service provision and to reduce 
dependency on complex models (NL10) 

o at least more time stamps a day including traffic peak hours (NL1, NL2) 
- data available over long periods of year measured with the same instrument (INT1) 
- water/land differences (NL1) 
- column/surface relation (NL1) 
- real-time data for awareness and changing behaviour of general public (NL3, INT3) 
- Measurement of air quality parameters 2 m above ground, i.e. at nose level (INT3) 

 
5) Other pollutants/parameters required to be captured (by satellites) 

- ultra fine particles (UFP) needed to be measured (DE1, NL6, NL4, DE2) 
- secondary aerosols: particles which have not been directly emitted into the air as particles, 

but through a gas-to-particle conversion, nucleation or chemical process. (DE1) 
- PM distinguished by source of pollutions (INT2, NL11), chemical composition (NL1, NL7, NL2, 

INT4) (Benedetti et al., 2018), vertical profile (NL2) (Benedetti et al., 2018) and size 
distribution (NL6) (Benedetti et al., 2018; Sorek-Hamer et al., 2016) 

- Ammonia (NL2, NL4) 
- CO2 (NL2, NL4), ideally distinguished by anthropogenic and natural sources (NL2) 
- Sulphur (but problem with water vapour interference) from ships (NL5) and from coal-fired 

power plants in South-East Asia (INT4) 
- NO from coal-fired power plants in South-East Asia (INT4) 
- O3 at surface level (NL4, INT1) 
- Methane from agricultural production (NL10) 
- Black carbon (INT4) 
- Mixing layer height MLH (DE2), see also Tang et al. (2016) “…to acquire continuous 

observations with high spatial and temporal resolution, ground-based remote sensing has 
become the most advanced approach to MLH measurement… 

- Humidity: measurements from sat. rather sparse, profiles needed (NL11) 
- AOD at multiple wavelengths and absorption AOD (Benedetti et al., 2018) 

 
6) Current and future user groups and user needs/ new (fields of) applications 

- exposure estimation (NL1) 
- land use regression modelling of urban air quality variability (NL1) 
- future: cyclist route planning for healthy routes (NL9) 
- tackling air pollution problems on problematic roads (NL9) 
- data assimilation: improving the spatial coverage of other datasets by incorporating 

information from satellite data (NL5, NL2) (Mushore et al., 2017) 
- ship emission detection for coastline pollution regulations, combining satellite NO2 data with 

ship tracking data from AIS (NL5) 
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- land surface temperature for monitoring urban heat island effects (NL5) (Kotharkar et al., 
2018) 

- future: air pollution-neutral city planning (NL7, NL4) 
- air quality monitoring, impacts in relation to population density (DE1) 
- source apportionment studies, i.e. measurements and tracking down of the sources of air 

pollution, e.g. transport, industrial production, biomass cooking, etc.  
(http://www.who.int/quantifying_ehimpacts/global/source_apport/en/) (INT2) 

- vertical profiling (INT3)  
- (near to) real time monitoring of air quality (INT3) 
- evaluating policy effects, such as environmental zones in cities (NL1) 
- If better data is available it would e.g. allow to detect emissions from certain incidences or 

events, such as a chemical disaster or volcano eruptions (NL10)  
- With respect to methane, it would be good being able to detect how much is emitted where 

and when (NL10) 
- Being able to track what is emitted where and when might be helpful also with respect to 

tracking emissions from ships, because that would help to enforce stricter regulations 
regarding emissions as they are currently discussed in the NL (polluter pays principle). (NL10) 

- Monitor biomass burning: number of fires, locations of fires, smoke-plume distribution, 
injection height, fire radiative power, long-range transport, and mapping of burnt areas (Chen 
et al., 2017) and monitoring non-occupational exposure to wildfire smoke (Liu et al 2015) 

- Monitoring pollutant plumes from coal-fired power plants (INT4), mining activities (Csavina et 
al., 2012), and unconventional oil and natural gas production (Field, Soltis, & Murphy, 2014) 

 
7) New (commercial) markets, new business models 

- climate services: Finance sectors/insurance using climate services for risk assessment, re-
insurance (NL8) 

- climate services: tourism sector not that much interested, don’t want to burden their positive 
image (NL8) 

- climate services: big data platforms (google, facebook etc.) as data providers, question 
whether data is provided open access or not, legal fights at courts pending (NL8) 

- cyclist healthy route planning (NL9) 
- city planning based on air pollution neutrality (NL7, NL4) and climate neutral developments 

(NL4) 

 
8) Any other issues mentioned by the experts 

- providing climate services as a new products/service needs to consider users having different 
levels of knowledge (layperson vs. expert users), and what effects does the use of such data 
have on them (NL8) 

- also, the non-user, why do they not use it (they don’t want it, they don’t know it, they tried 
using it and have given up) (NL8) 

- data on air quality is potentially politically sensitive, government might not want to 
spread/publicize the data or doesn’t trust the data source (INT2, INT4) 
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- for long-term datasets, when new satellite is launched to replace an older one, period of 
overlap is needed for calibration and continuation of dataset (NL3) 

- Satellite data is mostly used in developed countries, with the resources and knowledge to 
process the data (Prasad, Gray, Ross, & Kano, 2016)  
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5 Results and conclusions 

In the following, we present the main findings from the research based on the expert interviews and 
the literature review we conducted with respect to user needs for air quality and climate data from 
satellites. The section is divided into two parts, first comes a rough quantification of used needs per 
field of application and parameter, then a general discussion and reflection on the main findings.  

 

5.1 Quantified user needs per field of application and parameter 

The following tables aim to summarize our findings in a sort of quantification of user needs per field of 
application with respect to the various air quality and climate parameters. The tables, depending on 
the application, deal with user needs in terms of spatial and temporal resolution and attribute 
accuracy, which is referred to as the accuracy of the air pollution measurements. The given 
recommendations are based on whether or not the data is accurate enough for a specific application. 
It needs to be mentioned, that the numbers in the tables need to be digested with care, because they 
represent a sort of snapshot based on interviews with selected experts, and therefore entail a certain 
level of uncertainty. In any case, there is no straightforward scientific evidence in a strict sense 
employed in the quantification for the different items in the table, such as spatial resolution, etc.  

The most important parameters according to the experts are highlighted in yellow. Moreover, the 
tables shall not be read independently of the explanatory notes. 

 

Epidemiology and health 

PM2.5, NO2 and O3 are the most important parameters for health effect studies in developed countries. 
Particular PM2.5 and NO2 work particularly well as so-called indicator parameters, to which many other 
parameter for air quality, to which others relevant parameters closely relate to. In developing 
countries PM2.5 and NO2 are most important due to wildfire burning and biomass cooking. For PM2.5, 
which has a low spatial and temporal variability, the currently available satellite images are enough to 
reach the required 1x1 km resolution after downscaling. Ozone is hard to measure at surface level 
using satellite images. However, good in-situ measurements and chemical transport models (CTM) are 
available. The most important pollutant for which better data is needed, is NO2. Land use regression 
(LUR) models can already reach a resolution of 100x100 m, but due to its very high spatial and 
temporal variability, better accuracy can be reached by more accurate and finer resolution input data 
to the models. This could consist of any satellite data with a higher spatial and temporal resolution 
than what is currently available.  
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Table 3 User needs epidemiology and health 

Pollutant Current situation Required 
spatial 
resolution 

Required 
temporal 
resolution 

Attribute 
accuracy 

More detail 
required 

Remarks 

PM10 NA NA NA NA NA Not the most 
relevant 
parameter for 
health effects 

PM2.5
1 Downscaled to 

1x1 km, LUR 
models 100x100 
m 

1x1 km  yes Chemical 
composition 

 

Ultrafine 
particles 
(UFP) 

Short-term 
monitoring 
campaigns 

Within-
city 
variability 

Multiple times 
a day incl. peak 
hours 

unknown   

NO2 7x7 km or 1-2 
monitors per 
city, LUR models 
100x100 m 

Street 
level 
variability 

Multiple times 
a day incl. peak 
hours 

yes   

O3 1-2 monitors per 
city, CTM’s 

CTM, 
resolution 
OK 

Multiple 
daytime 
measurements 
(night not 
relevant) 

yes  Needed at 
surface level, 
good in-situ 
measurement
s are available 
in developed 
countries 

 

Urban planning 

For urban planning PM10 and NO2 are currently the most relevant parameters, because these two are 
mentioned as standards in the EU air quality directive from 2008. Moreover, PM2.5 is also highly 
relevant, because of its function as indicator parameter, as discussed above.  

Data for the relevant air quality parameters is required at a rather small-scaled spatial resolution such 
as 100 x 100 m, because of the fine granularity of the urban form. However, this does not necessarily 
mean that the data for this has to come straight from satellite-based sensors. Deriving the information 
from suitable air quality models that makes of use satellite data is a more viable and cost-efficient 
solution. Temporal resolution for urban planning related purposes does not need to go below daily 
averages. More important is data on the source of the pollution, e.g. motorized transport or industrial 
production, and the vertical profile of the pollution, because this helps defining spatial planning 
interventions, which aim at reducing or relocating the emissions from these sources. 

                                                           
1 The most important parameters in each table according to the experts are highlighted in yellow. 
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Table 4 User needs urban planning 

Pollutant Current situation Required 
spatial 
resolution 

Required 
temporal 
resolution 

More details 
required 

Remarks 

PM10
1 Often used in 

planning as standard, 
data derived either 
from ground based 
monitoring (i.e. point 
data, a couple of 
sensors per city) or 
air quality modelling  

100x100 m Daily averages  Cities are 
obliged to use 
this parameters 
due to national 
or provincial 
planning law 

PM2.5 Not yet considered in 
planning, because of 
current planning law 
(standards) but also 
limited data 
availability   

100x100 m Daily averages  Is needed to be 
considered in 
health related 
planning  
according to 
health experts  

UFP Not yet considered in 
planning practice 

    

NO2 Often used in 
planning as standard, 
data derived either 
from ground based 
monitoring (i.e. point 
data, a couple of 
sensors per city) or 
air quality modelling 

100x100 m Daily averages   

SO2     Not that 
relevant 

O3     Relevant at 
surface level 

 

Environmental monitoring and management 

Environmental monitoring and management usually covering larger areas such as regions or countries 
is hardly done using in-situ measurements or models, but largely relies on satellite imagery already. 
Therefore, this table is slightly differently structured focusing on the application rather than on the 
single parameters. Applications include source apportionment studies, emission plume tracking and 
wildfire monitoring. The required spatial and temporal resolution depends on the size of the plumes 
and the speed of dilution and travel, but this is not of the highest concern. Generally, more 
information on particle composition and size distribution would improve source apportionment and 
impact assessment.  
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Table 5 User needs environmental monitoring and management 

Application Pollutants/ 
products of 
interest 

Current 
situation 

Required 
spatial 
resolution 

Required 
temporal 
resolution 

More 
detail 
required 

Remarks 

Smoke 
plume 
detection 

RGB imagery Manual 
drawing of 
plumes, 1-
2 times a 
day 

Available is 
10x10km to 
1x1 km, 
depends on 
sensor  

Multiple times 
a day” 

 Plumes 
invisible 
during cloud 
cover or 
night 

Wildfire 
monitoring 

Aerosol optical 
depth (AOD), 
fine mode 
fraction (FMF), 
Ångström 
exponent (AE), 
PM, BC 

1x1 km  unknown Multiple time 
stamps a day, 
including peak 
hours to 
distinguish BC 
emission from 
traffic from 
those of other 
sources 

Particle 
compositio
n 

 

Mining 
activities 
pollution 
detection 

Atmospheric 
dust, aerosols, 
PM 

Tracking 
plume over 
several 
days 

unknown At least daily Particle 
diameter 
and 
compositio
n 

 

Detection of 
unconventio
nal oil and 
natural gas 
production 

NO, VOC, O3, 
hazardous air 
pollutants 
(HAP), 
methane 

8.5 x 5.3 
km 
(Aura/NAS
A TES) 

Higher than 
currently 
available 
(8.5 x 5.3 
km) 

unknown Vertical 
profile 

 

Atmospheric 
aerosol 
monitoring 

AOD, FMF, AE 1.2x1.2 
km, twice 
daily 

In cities: 
higher than 
available 

Twice daily is 
OK 

  

 

Air quality modelling 

Current air quality models are able to model air quality at fine spatial and temporal resolutions, e.g. 
1x1 m annual averages to 1x1 km hourly averages depending on the application. The accuracy of the 
models however depends on the quality of the input data and validation data. Satellite images are still 
of added value although they do not reach the spatial and temporal resolution of the final models. A 
better resolution of satellite images would, however, improve model accuracy. Satellite imagery of at 
least 1x1 km and with a temporal resolution of at least three images a day, would greatly improve 
current models. Here, pollutants of most interest are NO2 and NH3. Particulate matter is also of 
interest, but here the main focus should be on particle composition and vertical profile rather than 
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improvement of the spatio-temporal resolution. SO2 is of interest for ship emission detection. For this 
purpose, the 7x7 km TROPOMI images could be combined with AIS data for subgrid modelling in the 
future. The limited attribute accuracy due to interference with water vapour has however been noted.  

Table 6 User needs air quality modelling 

Pollutant Current situation Required spatial 
resolution2 

Required 

temporal 
resolution 

More detail 
required 

Remarks 

PM10 1x1 m to 1x1 km 
model, hourly to 
annual average 

cm’s to 1x1 km ≥ 3 images a 
day 

Composition, 
vertical profile 

Sat. as input/ 
validation data 

PM2.5 1x1 m to 1x1 km 
model, hourly to 
annual average 

cm’s to 1x1 km ≥ 3 images a 
day 

Composition, 
vertical profile 

Sat. as input/ 
validation data 

NO2 1x1 m model cm’s to street 
level 

≥ 3 images a 
day 

 Sat. as input/ 
validation data 

SO2 7x7 km satellite 
images combined 
with AIS data 

OK after 
subgrid 
modelling with 
AIS data 

unknown  Interest mostly 
in ship 
emissions 

NH3 1x1 km, hourly 
model 

1x1 km ≥ 3 images a 
day 

  

 

 

5.2 Conclusions 

Higher spatio-temporal resolution of air quality and climate data measured with satellite sensors 
required by multiple users.  

A higher spatial as well as temporal resolution of satellite measurements of air quality and climate 
parameters is required according to various experts and for different reasons. A higher temporal 
resolution, i.e. e.g. in hourly time periods rather than one data point per day, is needed in order to 
monitor air quality levels during peak times, e.g. rush hours, or for short-term health effect studies, 
and in order to reduce dependency on complex models. Source apportionment studies are needed, 
i.e. measurements and tracking down of the sources of air pollution, e.g. transport, industrial 
production, biomass cooking, etc., The required spatio-temporal resolution of source apportionment 
studies highly depends on the application. Examples mentioned in the literature review and by the 
experts, include wildfire monitoring, ship emission monitoring, emissions of coal-fired power plants, 
detection of unconventional oil and natural gas production, and mining activities. A better spatial 
resolution of satellite data on air quality is required by researchers and practitioners working at city 

                                                           
2 A spatial resolution of a few cm is a theoretically required resolution due to the applications, but in practice 
rather unrealistic, both from space and in-situ. 
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level in order to capture small-scale differences and temporal changes. Among other, this requirement 
refers to the use of such data in climate and air quality services, such as the AIR-Portal, which are 
becoming popular currently. While for modelling purposes a resolution of 1x1 or 2x2 km is sufficient, 
megacities in developing countries require at least 1x1 km but preferably smaller resolution. In 
European cities, where typically also other data sets are available at finer scales, ideally a resolution of 
100 x 100 m, or even 25 x 25 m for route planning would be nice to have. 

 

Other pollutants for air quality needed to be taken into account. 

Several experts identified the measuring of ultrafine particle (UFP, diameter less than 100 nm) as one 
of the main future needs, because they are ubiquitous in urban air and an acknowledged risk to 
human health, particular in cities. Although the average exposure to outdoor UFPs in Asian cities is 
about four-times larger than that in European cities (Kumar et al. 2014), UFPs are an important health 
threat in Europe as well. UFPs are mostly of interest to epidemiologists rather than policy makers, as 
there are no legal bounds to UFP concentrations (yet), nor thresholds set by the European directive. 
This leads to a vicious circle: a lack of official measurements by authorities leads to lack of health 
effect studies on UFPs, which is the main reason why no thresholds have been established, and 
therefore no legal obligations nor official measurements. Innovative approaches of how to forecast 
UFPs by combining satellite and in situ measurements are given in Crippa et al. (2017). Another major 
requirement referred to by a large number of experts is the distinction of PM by source of pollutions 
and chemical composition, as well as vertical profiles and size distribution of PM (Benedetti et al., 
2018; Sorek-Hamer et al., 2016). These would be useful for source apportionment, health effect 
studies, and targeted policy decisions to reduce air pollution both in cities and in rural areas. The 
measurement of ozone (O3) at ground level is another future requirement identified by some of the 
experts, although it is acknowledged that the ozone levels in the stratosphere are much higher than 
those at surface level, making it practically impossible to establish a relationship between the 
measurements taken by the satellite and those measured at surface level. Besides the pollutants 
related to urban activities, there would be an advantage of satellite images to obtain accurate 
measurements of pollutants related to farming activities, such as methane and ammonia. These are 
only sparsely measured by official monitoring networks, while satellites can cover larger areas.  

 

Satellite remote sensing remains a vital resource in climate studies 

Satellite remote sensing remain a vital resource in climate studies since majority of the essential climate 
variables (ECV’s) can be monitored through by satellites. This is against the background that ground 
control stations are limited in both coverage and scale, hence inadequate to monitor the earths 
changing climate. Current satellite sensors do have the required accuracy for monitoring cloud trends. 
However, finer spatial resolutions are essential for future satellite observations for temperature and 
water vapour. Temporal resolution of the satellite data has been a recurring limitation in our review 
that limits the utilization of remote sensing data for climate studies (see above). Important limitations 
of current measurements also include the technical characteristics of the sensors themselves. Some 
satellites cannot stand the test of time in terms of the loss of radiometric sensitivity, and hence causes 
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drift in observations. Especially in climate change studies, the continuity of historical datasets is of major 
importance. 

 

Satellite remote sensing has a promising future for air dispersion modelling. 

Satellite remote sensing has a promising future for air quality dispersion modelling, particularly in 
low-income countries that may lack the resources to implement extensive ground monitoring 
programs. The role of satellite data is either as source input data or for parameter estimation 
validation for dispersion models. Synthesizing the various literature, we deduce that the common air 
quality observation for dispersion modelling is AOD. The AOD is retrievable from majority of the 
sensors available of which the retrievals from MODIS is the most commonly used. Specific user needs 
and limitations relating to spatial and temporal resolutions have rarely been indicated in literature 
perhaps because the atmospheric life span of AOD is short (days to weeks) and highly geographically 
localized.  

 

Satellite and in situ based measurements of air quality are complementary and are ideally to be 
integrated. 

In many of the studies the experts referred to in the interviews it’s not so much a question of either 
using satellite data or in situ measurements, but rather more of how to integrate high spatial 
resolution satellite data with high temporal but low spatial coverage of in-situ sensors (Mushore, 
Odindi, Dube, Matongera, & Mutanga, 2017). For instance, air quality satellite data can be used for 
measuring background levels of air pollution, while ground based measurements help to identify 
actual pollution levels in certain location. Another example of integration of both sources is for 
forecasting UFPs by combining satellite and in situ measurements as given in Crippa et al. (2017). 

 

Services based on air quality and climate data are increasingly developed by commercial businesses and 
lead to new applications.  

Climate and air quality services, i.e. especially online tools and applications, that make use of satellite 
data among other data sources, are increasingly developed and provided by commercial companies. 
Goal of many of these services is to provide reliable, tailor-made, and readily accessible climate and air 
quality data at high resolution to decision makers. Examples are AIR-Portal 
(https://airportal.stcorp.nl/), wind and solar power forecasts (http://www.hermess.nl/assimilating-
earth-observation/), airTEXT (https://www.copernicus.eu/en/use-cases/airtext-air-quality-
information-glance) robust climate data targeted information products 
(https://iri.columbia.edu/resources/enacts/), and a climate risk screening tool (Acclimatise Aware, 
http://www.acclimatise.uk.com/analytics/applications/). Basic concept of many of these services is 
that they use available data from various services, among them satellite data, run complex models to 
add value to the data, e.g. by downscaling the spatial and temporal resolution, and then provide the 
results in user friendly online applications, either for free or based on contracts and licences. There is 
also an interest in the use of air quality and climate data for new applications. For example, insurance 

https://airportal.stcorp.nl/
http://www.hermess.nl/assimilating-earth-observation/
http://www.hermess.nl/assimilating-earth-observation/
https://www.copernicus.eu/en/use-cases/airtext-air-quality-information-glance
https://www.copernicus.eu/en/use-cases/airtext-air-quality-information-glance
https://iri.columbia.edu/resources/enacts/
http://www.acclimatise.uk.com/analytics/applications/
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companies gain interest in air quality data for health risk assessment and climate data for building 
damage risk assessment.   

However, while such tools and applications are increasingly being developed these days, serious 
questions in relation to it such as “What are the revenue schemes for such services, who is paying for 
it, and who is earning money from it”, are still unanswered. Various court cases are currently 
addressing the question: who is entitled to use and to valorise the data and the services, e.g. 
meteorological forecasts.  

 

In Global South countries more expertise is needed on interpretation of satellite data. 

Developing countries still have the highest levels of air pollution due to large amount of traffic in 
megacities, lack of regulations on car exhaust filtering, mainly fossil fuel based energy production and 
heavy industries. While threshold values, regulations and official monitoring networks to check on 
those are common practice in developed countries, they are much less common practice in the Global 
South. Satellite data can be useful to fill those gaps where no monitoring networks exist. However, the 
expertise to process and interpret the satellite data is mostly found in the developed countries. 
Besides that, governments do not trust data from low-cost sensors or satellites when not proven 
accurate compared to ground truth measurements. They are also likely to point to pollutant sources in 
neighbouring countries and explain their own high pollution levels by transboundary pollutant 
transport. Satellite data can make these issues more insightful, but accurate data and good data 
quality assessment are required.   

 

Air quality and climate data and services based on these are highly political/sensitive issues. 

Availability and access to detailed climate and air quality data and services based on these is often a 
sensitive political issue, particularly in global south countries. Eventually policy makers are not willing 
to make data available, that discredits programmes and interventions, or results are being discarded 
for being incorrect. In the (winter) tourism sector, climate data and services are e.g. eventually refused 
in order to not discredit the image of the location. Moreover, with respect to air quality and climate 
services open for the public, also user capabilities to understand the information need to be 
considered.  
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7 Annexes 
7.1 Interview guide 

Guiding questions 

First section: Their current work related to air quality and the use of data within that 

1. What is/are your (current, past, future) activities/analyses for which you/your 
group/institutions/agency use/s) data on air quality? 

2. Is the tasks/activities/ analyses you use air quality data for an obligatory (statutory) one or not, 
how often/regular do you do this 

3. What air quality data do you use for that (what pollutants, at what spatial resolution, what 
temporal resolution, measured at what height, etc.) 

4. Where is the data coming from (own data or third parties), what’s the source of the data, 
from which year, etc.?  

5. How do you get the data, what format, how frequent, how timely, real-time?  
6. Have you ever worked with or considered air quality from satellite data? Why (Q7) /why not 

(Q8) using them?  
7. If yes: for what advantages do you choose to work with satellite data? 
8. If not: because of which aspect don’t you use satellite data? (what pollutants, at what spatial 

resolution, at what temporal resolution, measured at what height, etc.)  

 

Second section: requirements for new/better air quality data  

1. Are you happy with the data quality (in all respects)? What do you think could be better about 
the data? 

2. If you have better air quality data would you do tasks/activities differently resp. would you do 
other tasks/activities? 

3. Any upcoming/future challenges/tasks burning questions/issues for which data or air quality 
might be needed (if not addressed in previous question already ) 

4. If you can wish: what kind of air quality data would you like to have / what is needed to do 
your tasks/activities best (what pollutants, at what spatial resolution, at what temporal 
resolution, measured at what height, etc.)? 

5. Do you see other needs or other potential users of improved air quality data? 
6. Any other issues you would like to mention?  
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